Subgroup enumeration

I've been playing around with the Rubik's cube subgroup generated by the turns: (U U' D D' L2 R2 F2 B2) which I refer to as the D4h cube subgroup after the symmetry invariance of the generator set. This, I believe, is the subgroup employed by Kociemba in his two phase algorithm. Anyway, I have performed a partial enumeration of the subgroup and its coset space. I was wondering if anyone might be able to confirm these numbers as a check on my methodology.

Six Face/D4h Coset Enumeration (q turns)
Depth  Cosets     Total
 0         1         1
 1         4         5
 2        34        39
 3       312       351
 4      2772      3123
 5     24996     28119
 6    225949    254068
 7   2017078   2271146

D4h cube group enumeration, 8 gen (U U' D D' L2 R2 F2 B2)
Depth Class(D4h) Elements   Total
 0         1         1         1  
 1         2         8         9  
 2         7        48        57  
 3        25       284       341  
 4       124      1678      2019 
 5       648      9664     11683  
 6      3523     54475     66158  
 7     19006    299960    366118 
 8    100741   1602352   1968470  
 9    518843   8279732  10248202 
10   2571647  41089158  51337360  

D4h cube group enumeration, 10 gen (U U' D D' L2 R2 F2 B2 U2 D2)
Depth Class(D4h) Elements   Total
 0         1         1         1  
 1         3        10        11  
 2        12        73        84  
 3        48       514       598  
 4       262      3515      4113 
 5      1550     22984     27097  
 6      9245    142982    170079  
 7     54578    859946   1030025  
 8    309714   4922028   5952053 
 9   1681312  26815882  32767935